中华眼底病杂志

中华眼底病杂志

遗传性眼底病基因和干细胞治疗趋势与面临的挑战和机遇

查看全文

遗传性眼底病是造成患者视力不可逆损害的一重要原因,因其预后差、临床缺乏有效干预手段而备受关注。随着大量遗传性眼底病致病基因的发现以及基因编辑技术与干细胞技术的发展,基因与干细胞治疗应运而生,成为治愈这类疾病的新希望。基因治疗更多针对早期遗传性眼底病,以导入野生型基因片段替代突变基因来维持现有的视网膜细胞活力;干细胞治疗则更多地针对晚期遗传性眼底病,以健康的干细胞来置换和填充失去功能的视网膜细胞。虽然基因与干细胞治疗仍面临基因脱靶、分化效率、细胞迁移、长期疗效等诸多问题,但其在临床前期及临床试验中取得的成果不容小觑。随着各种新技术和新材料的出现,势必进一步辅助基因与干细胞治疗策略,为遗传性眼底病的临床治愈带来无限机遇和无限可能。

Hereditary ocular fundus disease is an important cause of irreversible damage to patients' visual acuity. It has attracted much attention due to its poor prognosis and lack of effective clinical interventions. With the discovery of a large number of hereditary ocular fundus genes and the development of gene editing technology and stem cell technology, gene and stem cell therapy emerged as the new hope for curing such diseases. Gene therapy is more directed at early hereditary ocular fundus diseases, using wild-type gene fragments to replace mutant genes to maintain existing retinal cell viability. Stem cell therapy is more targeted at advanced hereditary ocular fundus diseases, replacing and filling the disabled retinal cell with healthy stem cells. Although gene and stem cell therapy still face many problems such as gene off-target, differentiation efficiency, cell migration and long-term efficacy, the results obtained in preclinical and clinical trials should not be underestimated. With the emergence of various new technologies and new materials, it is bound to further assist gene and stem cell therapy, bringing unlimited opportunities and possibilities for the clinical cure of hereditary ocular fundus diseases.

关键词: 视网膜疾病/遗传学; 基因疗法; 干细胞治疗; 述评

Key words: Retinal diseases/genetics; Gene therapy; Stem cell therapy; Editorial

引用本文: 韩如意, 金子兵. 遗传性眼底病基因和干细胞治疗趋势与面临的挑战和机遇. 中华眼底病杂志, 2018, 34(6): 519-525. doi: 10.3760/cma.j.issn.1005-1015.2018.06.001 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations[J/OL]. Cold Spring Harb Perspect Med, 2014, 5(2): 017111[2014-10-16]. http://perspectivesinmedicine.cshlp.org/content/5/2/a017111.long. DOI: 10.1101/cshperspect.a017111.
2. Cideciyan AV, Sudharsan R, Dufour VL, et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector[J]. Proc Natl Acad Sci USA, 2018, 115(36): 8547-8556. DOI: 10.1073/pnas.1805055115.
3. Ran X, Cai WJ, Huang XF, et al. RetinoGenetics: a comprehensive mutation database for genes related to inherited retinal degeneration[J/OL]. Database (Oxford), 2014, 2014: E1[2014-06- 17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060621/. DOI: 10.1093/database/bau047.[published online ahead of print].
4. Trapani I, Banfi S, Simonelli F, et al. Gene therapy of Inherited retinal degenerations: prospects and challenges[J]. Hum Gene Ther, 2015.26: 193-200. DOI: 10.1089/hum.2015.030.
5. Musarella MA, Macdonald IM. Current concepts in the treatment of retinitis pigmentosa[J/OL]. J Ophthalmol, 2011, 2011: 753547[2010-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964907/. DOI: 10.1155/2011/753547.
6. Petrs-Silva H, Linden R. Advances in gene therapy technologies to treat retinitis pigmentosa[J]. Clin Ophthalmol, 2014, 8: 127-136. DOI: 10.2147/OPTH.S38041.
7. 邓雯丽, 向萍, 金子兵. 多能干细胞分化来源视网膜色素上皮细胞移植治疗视网膜变性研究进展[J]. 中华细胞与干细胞杂志(电子版), 2014, 4(2): 97-103. DOI: 10.3877/cma.j.issn.2095-1221.2014.02.004.Deng WL, Xiang P, Jin ZB. The research progress toward clinical transplantation of pluripotent stem cell-derived retinal pigmented epithelial cells[J]. Chin J Cell Stem Cell (Electronic Edition), 2014, 4(2): 97-103. DOI: 10.3877/cma.j.issn.2095-1221.2014.02.004.
8. Bennicelli J, Wright JF, Komaromy A, et al. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer[J]. Mol Ther, 2008, 16(3): 458- 465. DOI: 10.1038/sj.mt.6300389.
9. Narfström K, Katz ML, Bragadottir R, et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog[J]. Invest Ophthalmol Vis Sci, 2003, 44(4): 1663-1672.
10. Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness[J]. Nat Genet, 2001, 28(1): 92-95. DOI: 10.1038/88327.
11. Acland GM, Aguirre GD, Bennett J, et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness[J]. Mol Ther, 2005, 12(6):1072-1082. DOI: 10.1016/j.ymthe.2005.08.008.
12. Le Meur G, Stieger K, Smith AJ, et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium[J]. Gene Ther, 2007, 14(4): 292-303. DOI: 10.1038/sj.gt.3302861.
13. Pang JJ, Chang B, Kumar A, et al. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis[J]. Mol Ther, 2006, 13(3): 565-572. DOI: 10.1016/j.ymthe.2005.09.001.
14. Roman AJ, Boye SL, Aleman TS, et al. Electroretinographic analyses of RPE65-mutant rd12 mice: developing an in vivo bioassay for human gene therapy trials of Leber congenital amaurosis[J]. Mol Vis, 2007, 13: 1701-1710.
15. Chen Y, Moiseyev G, Takahashi Y, et al. RPE65 gene delivery restores isomerohydrolase activity and prevents early cone loss in Rpe65-/- mice[J]. Invest Ophthalmol Vis Sci, 2006, 47(3): 1177-1184. DOI: 10.1167/iovs.05-0965.
16. Van Hooser JP, Liang Y, Maeda T, et al. Recovery of visual functions in a mouse model of Leber congenital amaurosis[J]. J Biol Chem, 2002, 277(21): 19173-19182. DOI: 10.1074/jbc.M112384200.
17. Jacobson SG, Acland GM, Aguirre GD et al. Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection[J]. Mol Ther, 2006, 13(6): 1074-1084. DOI: 10.1016/j.ymthe.2006.03.005.
18. Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis[J]. N Engl J Med, 2008, 358(21): 2240-2248. DOI: 10.1056/NEJMoa0802315.
19. Hauswirth WW, Aleman TS, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase Ⅰ trial[J]. Hum Gene Ther, 2008, 19(10): 979-990. DOI: 10.1089/hum.2008.107.
20. Cideciyan AV, Aleman TS, Boye SL, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics[J]. Proc Nati Acad Sci USA, 2008, 105(39): 15112-15117. DOI: 10.1073/pnas.0807027105.
21. Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis[J]. N Engl J Med, 2008, 358(21): 2231-2239. DOI: 10.1056/NEJMoa0802268.
22. Bennett J, Wellman J, Marshall KA, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial[J]. Lancet, 2016, 388(10045): 661-672. DOI: 10.1016/S0140-6736(16)30371-3.
23. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2017, 390(10097): 849-860. DOI: 10.1016/S0140-6736(17)31868-8.
24. Koch S, Sothilingam V, Garcia Garrido M, et al. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa[J]. Hum Mol Genet, 2012, 21(20): 4486-4496. DOI: 10.1093/hmg/dds290.
25. Michalakis S, Koch S, Sothilingam V, et al. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa[J]. Adv Exp Med Biol, 2014, 801: 733-739. DOI: 10.1007/978-1-4614-3209-8_92.
26. Conlon TJ, Deng WT, Erger K, et al. Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa[J]. Hum Gene Ther Clin Dev, 2013, 24(1): 23-28. DOI: 10.1089/humc.2013.037.
27. Smith AJ, Scchlichtenbrede FC, Tschernutter M, et al. AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa[J]. Mol Ther, 2003, 8(2): 188-195.
28. Petersen-Jones SM, Occelli LM, Winkler PA, et al. Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach[J]. J Clin Invest, 2018, 128(1): 190-206. DOI: 10.1172/JCI95161.
29. Beltran WA, Cideciyan AV, Iwabe S, et al. Successful arrest of photoreceptor and vision loss expands the therapeutic window of retinal gene therapy to later stages of disease[J]. Proc Natl Acad Sci USA, 2015, 112(43): 5844-5853. DOI: 10.1073/pnas.1509914112.
30. Pawlyk BS, Bulgakov OV, Sun X, et al. Photoreceptor rescue by an abbreviated human RPGR gene in a murine model of X-linked retinitis pigmentosa[J]. Gene Ther, 2016, 23(2): 196-204. DOI: 10.1038/gt.2015.93.
31. Beltran WA, Cideciyan AV, Boye SE, et al. Optimization of retinal gene therapy for X-linked retinitis pigmentosa due to RPGR mutations[J]. Mol Ther, 2017, 25(8): 1866-1880. DOI: 10.1016/j.ymthe.2017.05.004.
32. Beltran WA, Cideciyan AV, Lewin AS, et al. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa[J]. Proc Natl Acad Sci USA, 2012, 109(6):2132-2137. DOI: 10.1073/pnas.1118847109.
33. Tessitore A, Parisi F, Denti MA, et al. Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model[J]. Mol Ther, 2006, 14(5): 692-699. DOI: 10.1016/j.ymthe.2006.07.008.
34. Bakondi B, Lv W, Lu B, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa[J]. Mol Ther, 2016, 24(3): 556-563. DOI: 10.1038/mt.2015.220.
35. Latella MC, Di Salvo MT, Cocchiarella F, et al. In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina[J]. Mol Ther Nucleic Acids, 2016, 5(11): 389. DOI: 10.1038/mtna.2016.92.
36. Jiang L, Zhang H, Dizhoor AM, et al. Long-term RNA interference gene therapy in a dominant retinitis pigmentosa mouse model[J]. Proc Natl Acad Sci USA, 2011, 108(45): 18476-18481. DOI: 10.1073/pnas.1112758108.
37. Gorbatyuk M, Justilien V, Liu J, et al. Suppression of mouse rhodopsin expression in vivo by AAV mediated siRNA delivery[J]. Vision Res, 2007, 47(9): 1202-1208. DOI: 10.1016/j.visres.2006.11.026.
38. O'Reilly M, Palfi A, Chadderton N, et al. RNA interference-mediated suppression and replacement of human rhodopsin in vivo[J]. Am J Hum Genet, 2007, 81(1): 127-135. DOI: 10.1086/519025.
39. Millington-Ward S, Chadderton N, O’Reilly M, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa[J]. Mol Ther, 2011, 19(4): 642-649. DOI: 10.1038/mt.2010.293.
40. Mao H, Gorbatyuk MS, Rossmiller B, et al. Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice[J]. Hum Gene Ther, 2012, 23(4): 356-366. DOI: 10.1089/hum.2011.213.
41. Chadderton N, Millington-Ward S, Palfi A, et al. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy[J]. Mol Ther, 2009, 17(4): 593-599. DOI: 10.1038/mt.2008.301.
42. Büning H, Perabo L, Coutelle O, et al. Recent developments in adeno-associated virus vector technology[J]. J Gene Med, 2008, 10(7): 717-733. DOI: 10.1002/jgm.1205.
43. Theodorou-Kanakari A, Karampitianis S, Karageorgou V, et al. Current and emerging treatment modalities for Leber's hereditary optic neuropathy: a review of the literature[J]. Adv Ther, 2018, 35(10): 1510-1518. DOI: 10.1007/s12325-018-0776-z.
44. MacLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial[J]. Lancet, 2014, 383(9923): 1129-1137. DOI: 10.1016/S0140-6736(13)62117-0.
45. Park TK, Wu Z, Kjellstrom S, et al. Intravitreal delivery of AAV8 retinoschisin results in cell type-specific gene expression and retinal rescue in the Rs1-KO mouse[J]. Gene Ther, 2009, 16(7): 916-926. DOI: 10.1038/gt.2009.61.
46. Buch PK, Bainbridge JW, Ali RR. AAV-mediated gene therapy for retinal disorders: from mouse to man[J]. Gene Ther, 2008, 15(11): 849-857. DOI: 10.1038/gt.2008.66.
47. Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging[J]. Mol Ther, 2010, 18(1):80-86. DOI: 10.1038/mt.2009.255.
48. Li Q, Miller R, Han PY, et al. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential[J]. Mol Vis, 2008, 14: 1760-1769.
49. Rajala A, Wang Y, Zhu Y, et al. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo[J]. Nano Lett, 2014, 14(9): 5257- 5263. DOI: 10.1021/nl502275s.
50. Ochoa G, Sesma JZ, Díez MA, et al. A novel formulation based on 2, 3-di(tetradecyloxy) propan-1-amine cationic lipid combined with polysorbate 80 for efficient gene delivery to the retina[J]. Pharm Res, 2014, 31(7): 1665-1675. DOI: 10.1007/s11095-013-1271-5.
51. Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium[J]. Biomaterials, 2013, 34(29): 7158-7167. DOI: 10.1016/j.biomaterials.2013.06.002.
52. Bourges JL, Gautier SE, Delie F, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles[J]. Invest Ophthalmol Vis Sci, 2003, 44(8): 3562-3569.
53. Koo H, Moon H, Han H, et al. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection[J]. Biomaterials, 2012, 33(12):3485-3493. DOI: 10.1016/j.biomaterials.2012.01.030.
54. Han Z, Banworth MJ, Makkia R, et al. Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype[J]. FASEB J, 2015, 29(6): 2535-2544. DOI: 10.1096/fj.15-270363.
55. Dalkara D, Kolstad KD, Caporale N, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous[J]. Mol Ther, 2009, 17(12): 2096-2102. DOI: 10.1038/mt.2009.181.
56. Kolstad KD, Dalkara D, Guerin K, et al. Changes in adeno-associated virus-mediated gene delivery in retinal degeneration[J]. Hum Gene Ther, 2010, 21(5): 571-578. DOI: 10.1089/hum.2009.194.
57. Lewis GP, Charteris DG, Sethi CS, et al. Animal models of retinal detachment and reattachment: identifying cellular events that may affect visual recovery[J]. Eye (Lond), 2002, 16(4): 375-387. DOI: 10.1038/sj.eye.6700202.
58. Lewis GP, Sethi CS, Linberg KA, et al. Experimental retinal reattachment: a new perspective[J]. Mol Neurobiol, 2003, 28(2): 159-175. DOI: 10.1385/MN:28:2:159.
59. Fisher SK, Lewis GP. Müller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data[J]. Vision Res, 2003, 43(8): 887-897.
60. Fisher SK, Lewis GP, Linberg KA, et al. Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment[J]. Prog Retin Eye Res, 2005, 24(3): 395-431. DOI: 10.1016/j.preteyeres.2004.10.004.
61. Lebherz C, Maguire A, Tang W, et al. Novel AAV serotypes for improved ocular gene transfer[J]. J Gene Med, 2008, 10(4): 375-382. DOI: 10.1002/jgm.1126.
62. Harvey AR, Kamphuis W, Eggers R, et al. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors[J]. Mol Cell Neurosci, 2002, 21(1): 141-157.
63. Martin KR, Klein RL, Quigley HA. Gene delivery to the eye using adeno-associated viral vectors[J]. Methods, 2002, 28(2): 267-275.
64. Dalkara D, Byrne LC, Klimczak RR, et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous[J/OL]. Sci Trans Med, 2013, 5(189): 189ra76[2013-06-12]. http://stm.sciencemag.org/content/5/189/189ra76.long. DOI: 10.1126/scitranslmed.3005708.
65. Jayakody SA, Gonzalez-Cordero A, Ali RR, et al. Cellular strategies for retinal repair by photoreceptor replacement[J]. Prog Retin Eye Res, 2015, 46: 31-66. DOI: 10.1016/j.preteyeres.2015.01.003.
66. Mead B, Berry M, Logan A, et al. Stem cell treatment of degenerative eye disease[J]. Stem Cell Res, 2015, 14(3): 243-257. DOI: 10.1016/j.scr.2015.02.003.
67. Jin ZB, Gao ML, Deng WL, et al. Stemming retinal regeneration with pluripotent stem cells[J/OL]. Prog Retin Eye Res, 2018, 2018:E1[2018-11-09]. https://linkinghub.elsevier.com/retrieve/pii/S1350-9462(17)30123-4. DOI: 10.1016/j.preteyeres.2018.11.003. [published online ahead of print].
68. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391): 1145-1147.
69. Meyer JS, Katz ML, Maruniak JA, et al. Neural differentiation of mouse embryonic stem cells in vitro and after transplantation into eyes of mutant mice with rapid retinal degeneration[J]. Brain Res, 2004, 1014(1-2): 131-144. DOI: 10.1016/j.brainres.2004.04.019.
70. Meyer JS, Katz ML, Maruniak JA, et al. Embryonic stem cell-derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors[J]. Stem Cells, 2006, 24(2): 274-283. DOI: 10.1634/stemcells.2005-0059.
71. Banin E, Obolensky A, Idelson M, et al. Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells[J]. Stem Cells, 2006, 24(2): 246-257. DOI: 10.1634/stemcells.2005-0009.
72. Buchholz DE, Hikita ST, Rowland TJ, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells[J]. Stem Cells, 2009, 27(10): 2427-2434. DOI: 10.1002/stem.189.
73. Osakada F, Ikeda H, Mandai M, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells[J]. Nat Biotechnol, 2008, 26(2): 215-224. DOI: 10.1038/nbt1384.
74. Assawachananont J, Mandai M, Okamoto S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice[J]. Stem Cell Reports, 2014, 2(5): 662-674. DOI: 10.1016/j.stemcr.
75. Shirai H, Mandai M, Matsushita K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration[J]. Proc Natl Acad Sci USA, 2016, 113(1): 81-90. DOI: 10.1073/pnas.1512590113.
76. Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells[J]. Cell Stem Cell, 2009, 5(4): 396-408. DOI: 10.1016/j.stem.2009.07.002.
77. Lu B, Malcuit C, Wang S, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration[J]. Stem Cells, 2009, 27(9): 2126-2135. DOI: 10.1002/stem.149.
78. Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats[J]. Cloning Stem Cells, 2006, 8(3): 189-199. DOI: 10.1089/clo.2006.8.189.
79. Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation[J]. Exp Neurol, 2008, 214(2): 347-361. DOI: 10.1016/j.expneurol.2008.09.007.
80. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9817): 713-720. DOI: 10.1016/S0140-6736(12)60028-2.
81. Schwartz S, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. DOI: 10.1016/S0140-6736(14)61376-3.
82. Schwartz SD, Tan G, Hosseini H, et al. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years[J]. Invest Ophthalmol Vis Sci, 2016, 57(5): 1-9. DOI: 10.1167/iovs.15-18681.
83. Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients[J]. Stem Cell Reports, 2015, 4(5): 860-872. DOI: 10.1016/j.stemcr.2015.04.005.
84. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676. DOI: 10.1016/j.cell.2006.07.024.
85. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872.
86. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858): 1917-1920. DOI: 10.1126/science.1151526.
87. Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2[J]. Nat Biotechnol, 2008, 26(11): 1269-1275. DOI: 10.1038/nbt.1502.
88. Wang Q, Xu X, Li J, et al. Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells[J]. Cell Res, 2011, 21(10): 1424-1435. DOI: 10.1038/cr.2011.108.
89. Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences[J]. Science, 2009, 324(5928): 797-801. DOI: 10.1126/science.1172482.
90. Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J]. Nature, 2009, 458(7239): 766-770. DOI: 10.1038/nature07863.
91. Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins[J]. Cell Stem Cell, 2009, 4(6): 472-476. DOI: 10.1016/j.stem.2009.05.005.
92. Osakada F, Jin ZB, Hirami Y, et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction[J]. J Cell Sci, 2009, 122(Pt 17): 3169-3179. DOI: 10.1242/jcs.050393.
93. Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells[J]. Cell, 2008, 134(5): 877-886. DOI: 10.1016/j.cell.2008.07.041.
94. Li Y, Tsai YT, Hsu CW, et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa[J]. Mol Med, 2012, 18: 1312- 1319. DOI: 10.2119/molmed.2012.00242.
95. Lamba DA, McUsic A, Hirata RK, et al. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells[J/OL]. PLoS One, 2010, 5(1): 8763[2010-01-20]. https://doi.org/10.1371/journal.pone.0008763. DOI: 10.1371/journal.pone.0008763.
96. Jin ZB, Okamoto S, Osakada F, et al. Modeling retinal degeneration using patient-specific induced pluripotent stem cells[J/OL]. PLoS One, 2011, 6(2): 17084[2011-02-10]. https://doi.org/10.1371/journal.pone.0017084. DOI: 10.1371/journal.pone.0017084.
97. Jin ZB, Okamoto S, Xiang P, et al. Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling[J]. Stem Cells Transl Med, 2012, 1(6): 503- 509. DOI: 10.5966/sctm.2012-0005.
98. Tucker BA, Park IH, Qi SD, et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice[J/OL]. PLoS One, 2011, 6(4): 18992[2011-04-29]. https://doi.org/10.1371/journal.pone.0018992. DOI: 10.1371/journal.pone.0018992.
99. Zhou L, Wang W, Liu Y, et al. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina[J]. Stem Cells, 2011, 29(6): 972-980. DOI: 10.1002/stem.637.
100. Mandai M, Fujii M, Hashiguchi T, et al. iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice[J]. Stem Cell Reports, 2017, 8(1): 69-83. DOI: 10.1016/j.stemcr.2016.12.008.
101. Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration[J]. N Engl J Med, 2017, 376(11): 1038-1046. DOI: 10.1056/NEJMoa1608368.
102. Burnight ER, Gupta M, Wiley LA, et al. Using CRISPR-Cas9 to generate gene-corrected autologous iPSCs for the treatment of inherited retinal degeneration[J]. Mol Ther, 2017, 25(9): 1999-2013. DOI: 10.1016/j.ymthe.2017.05.015.
103. Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[J]. Stem Cell Reports, 2018, 10(4): 1267-1281. DOI: 10.1016/j.stemcr.2018.02.003.
104. Siqueira RC, Messias A, Messias K, et al. Quality of life in patients with retinitis pigmentosa submitted to intravitreal use of bone marrow-derived stem cells (Reticell-clinical trial)[J]. Stem Cell Res Ther, 2015, 6: 29. DOI: 10.1186/s13287-015-0020-6.
105. Siqueira RC, Messias A, Voltarelli JC, et al. Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase Ⅰtrial[J]. Retina, 2011, 31(6): 1207-1214. DOI: 10.1097/IAE.0b013e3181f9c242.
106. Kuriyan AE, Albini TA, Townsend JH, et al. Vision loss after intravitreal injection of autologous "stem cells" for AMD[J]. N Engl J Med, 2017, 376(11): 1047-1053. DOI: 10.1056/NEJMoa1609583.
107. Wang NK, Tosi J, Kasanuki JM, et al. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa[J]. Transplantation, 2016, 89(8): 911-919. DOI: 10.1097/TP.0b013e3181d45a61.
108. Jacobson SG, Cideciyan AV, RomanAJ, et al. Improvement and decline in vision with gene therapy in childhood blindness[J]. N Engl J Med, 2015, 372(20): 1920-1926. DOI: 10.1056/NEJMoa1412965.
109. Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber's congenital amaurosis[J]. N Engl J Med, 2015, 372(20): 1887-1897. DOI: 10.1056/NEJMoa1414221.
110. Burnight ER, Giacalone JC, Cooke JA, et al. CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration[J]. Prog Retin Eye Res, 2018, 65: 28-49. DOI: 10.1016/j.preteyeres.2018.03.003.