中国普外基础与临床杂志

中国普外基础与临床杂志

胆囊癌CD133阳性细胞侵袭机制的实验研究

查看全文

目的研究胆囊癌CD133阳性细胞侵袭能力的产生机制。 方法Transwell法检测CD133阳性细胞和CD133阴性细胞的迁移和侵袭能力。半定量聚合酶链式反应(RT-PCR)法、蛋白免疫印迹法、细胞免疫荧光法分别检测CD133阳性细胞和CD133阴性细胞中CXCR4的表达。分别用SDF-1α、AMD3100作用GBC-SD细胞后,Transwell法检测CD133阳性细胞和CD133阴性细胞的迁移和侵袭能力。半定量RT-PCR法检测GBC-SD细胞中CD133 mRNA表达,蛋白免疫印迹法检测GBC-SD细胞中CD133蛋白表达。 结果①CD133阳性细胞中穿膜细胞数明显多于CD133阴性细胞(23.78±8.74比6.56±3.09,P=0.000 7)。②CD133阳性细胞中CXCR4mRNA相对灰度值明显高于CD133阴性细胞(0.642 4±0.020 4比0.335 9±0.043 2,P=0.004);CD133阳性细胞中CXCR4蛋白表达相对灰度值明显高于CD133阴性细胞(0.765 0±0.106 6比0.409 4±0.019 5,P=0.013);CD133阳性细胞中CXCR4荧光蛋白表达明显强于CD133阴性细胞。③细胞侵袭能力:穿膜细胞数量在CD133阳性细胞中,与空白对照组(23.78±8.74)相比,SDF-1α组(62.89±15.27)明显增加(P=0.000 6),AMD3100组(10.33±2.00)明显减少(P=0.000 2);在CD133阴性细胞中,与空白对照组(6.59±3.09)相比,SDF-1α组(6.89±4.23)无明显变化(P=0.41),AMD3100组(6.11±2.67)亦无明显变化(P=0.38)。④细胞迁移能力:迁移细胞数量,在CD133阳性细胞中,与空白对照组(35.56±10.97)相比,SDF-1α组(74.56±15.80)明显增加(P=0.000 3),AMD3100组(12.67±2.40)明显减少(P=0.000 2);在CD133阴性细胞中,与空白对照组(9.56±1.74)相比,SDF-1α组(9.78±2.04)无明显变化(P=0.43),AMD3100组(9.54±1.74)亦无明显变化(P=0.42)。⑤在GBC-SD细胞中CD133 mRNA表达:与空白对照组(0.450 0±0.024 3)相比,SDF-1α组明显增加(0.626 5±0.048 7,P=0.004),AMD3100组(0.359 3±0.047 3)明显下降(P=0.011);CD133蛋白表达:与空白对照组(0.440 9±0.013 0)相比,SDF-1α组(0.508 9±0.020 7)明显增加(P=0.016),而AMD3100组(0.317 7±0.013 7)明显下降(P=0.004)。 结论胆囊癌CD133阳性细胞高侵袭能力可能由于高表达CXCR4。

ObjectiveTo study the mechanism of invasion of CD133 positive population in gallbladder cancer. MethodsThe invasive abilities of the CD133 positive cells and the CD133 negative cells were detected by Transwell.The CXCR4 mRNA and protein in the CD133 positive cells and the CD133 negative cells were detected by the semi-quanti-tative RT-PCR, Western blot method, and immunofluorescence, respectively.SDF-1αand AMD3100 were respectively used to stimulate/inhibit the GBC-SD cells.The invasive ability and the migration force were detected in the CD133 posi-tive cells and the CD133 negative cells.The expressions CD133 mRNA and protein of the GBC-SD cells were detected by semi-quantitative RT-PCR and Western blot method, respectively. Results①The number of invasion cells in the CD133 positive cells was significantly more than that in the CD133 negative cells (23.78±8.74 versus 6.56±3.09, P=0.000 7).②The fluorescent protein of CXCR4 in the CD133 positive cells was stronger than that in the CD133 negative cells.The expression of CXCR4 mRNA in the CD133 positive cells was significantly higher than that in the CD133 negative cells (0.642 4±0.020 4 versus 0.335 9±0.043 2, P=0.004).The expression of CXCR4 protein in the CD133 positive cells was significantly higher than that in the CD133 negative cells (0.765 0±0.106 6 versus 0.409 4±0.019 5, P=0.013).③In the CD133 positive cells, compared with the control group, the number of invasion cells was significantly increased in the SDF-1αgroup (62.89±15.27 versus 23.78±8.74, P=0.000 6) and decreased in the AMD3100 group (10.33±2.00 versus 23.78±8.74, P=0.000 2).In the CD133 negative cells, compared with the control group, the number of invasion cells was not significant change in the SDF-1αgroup (6.89±4.23 versus 6.59±3.09, P=0.41) and in the AMD3100 group (6.11±2.67 versus 6.59±3.09, P=0.38), respectively.④In the CD133 positive cells, compared with the control group, the number of migration cells was significantly increased in the SDF-1αgroup (74.56±15.80 versus 35.56±10.97, P=0.000 3) and decreased in the AMD3100 group (12.67±2.40 versus 35.56±10.97, P=0.000 2).In the CD133 negative cells, compared with the control group, the number of migration cells was not significant change in the SDF-1αgroup (9.78±2.04 versus 9.56±1.74, P=0.43) and in the AMD3100 group (9.54±1.74 versus 9.56±1.74, P=0.42).⑤In the GBC-SD cells, compared with the control group, the CD133 mRNA was significantly increased in the SDF-1αgroup (0.626 5±0.048 7 versus 0.450 0±0.024 3, P=0.004) and decreased in the AMD3100 group (0.359 3±0.047 3 versus 0.450 0±0.024 3, P=0.011);the CD133 protein was significantly increased in the SDF-1αgroup (0.508 9±0.020 7 versus 0.440 9±0.013 0, P=0.016) and decreased in the AMD3100 group (0.317 7±0.013 7 versus 0.440 9±0.013 0, P=0.004). ConclusionThe high invasion ability of CD133 positive population in gallbladder cancer might be due to the high expression of CXCR4.

关键词: 胆囊癌; 侵袭; CD133; SDF-1α/CXCR4

Key words: Gallbladder cancer; Invasion; CD133; SDF-1α/CXCR4

引用本文: 俞远林, 姜波健, 陆瑞褀, 王守练, 俞继卫. 胆囊癌CD133阳性细胞侵袭机制的实验研究. 中国普外基础与临床杂志, 2014, 21(2): 156-161. doi: 10.7507/1007-9424.20140036 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Boutros C, Gary M, Baldwin K, et al.Gallbladder cancer:past, present and an uncertain future[J].Surg Oncol, 2012, 21(4):183-191.
2. Sugihara E, Saya H.Complexity of cancer stem cells[J].Int J Cancer, 2013, 132(6):1249-1259.
3. 俞远林, 姜波健, 俞继卫, 等.免疫磁珠法分离胆囊癌CD133阳性细胞及生物学行为的研究[J].中华实验外科杂志, 2012, 30(8):1652-1655.
4. Domanska UM, Timmer-Bosscha H, Nagengast WB, et al.CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy[J].Neoplasia, 2012, 14(8):709-718.
5. 陆瑞祺, 吴巨钢, 周国才, 等.胃癌C D133阳性细胞亚群肿瘤起始细胞样特性的检测[J].中华胃肠外科杂志, 2012, 15(2):174-179.
6. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al.Identification and expansion of human colon-cancer-initiating cells[J].Nature, 2007, 445(7123):111-115.
7. Galli R, Binda E, Orfanelli U, et al.Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma[J].Cancer Res, 2004, 64(19):7011-7021.
8. Bao S, Wu Q, McLendon RE, et al.Glioma stem cells promote radioresistance by preferential activation of the DNA damage res-ponse[J].Nature, 2006, 444(7120):756-760.
9. Yin S, Li J, Hu C, et al.C D133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity[J].Int J Cancer, 2007, 120(7):1444-1450.
10. Müller A, Homey B, Soto H, et al.Involvement of chemokine receptors in breast cancer metastasis[J].Nature, 2001, 410(6824):50-56.
11. Saur D, Seidler B, Schneider G, et al.CXCR4 expression incr-eases liver and lung metastasis in a mouse model of pancreatic cancer[J].Gastroenterology, 2005, 129(4):1237-1250.
12. Schimanski CC, Schwald S, Simiantonaki N, et al.Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behaviorof human colorectal cancer[J].Clin Cancer Res, 2005, 11(5):1743-1750.
13. Lee HJ, Lee K, Lee DG, et al.Chemokine (C-X-C motif) ligand 12 is associated with gallbladder carcinoma progression and is a novel independent poor prognostic factor[J].Clin Cancer Res, 2012, 18(12):3270-3280.
14. Yao X, Zhou L, Han S, et al.High expression of CXCR4 and CXCR7 predicts poor survival in gallbladder cancer[J].J Int Med Res, 2011, 39(4):1253-1264.
15. Sun X, Cheng G, Hao M, et al.CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression[J].Cancer Metastasis Rev, 2010, 29(4):709-722.
16. Ping YF, Yao XH, Jiang JY, et al.The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling[J]. J Pathol, 2011, 224(3):344-354.
17. 姜海广, 陆瑞祺, 姜波健, 等.基质细胞源性因子-1α/CXC趋化因子受体-4轴经PI3K/Akt通路对胃癌细胞CD133表达的调控作用[J].中华实验外科杂志, 2012, 29(3):378-380.
18. Zhang SS, Han ZP, Jing YY, et al.C D133+CXCR4+colon cancer cells exhibit metastatic potential and predict poor prognosis of patients[J].BMC Med, 2012, 10:85.